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This paper extends the hybrid FEM-DBCI method for the solution of open-boundary electrostatic problems to case in which some 
floating potential conductors are present in the system. The iterative solution scheme of the standard method is modified in order to 
deal with the unknown values of the potential of these conductors. 
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I.  INTRODUCTION 
 

HE FEM-DBCI, is a hybrid numerical method devised by 
the authors to deal with static and quasi-static 

electromagnetic field problems in unbounded domains, such 
as electrostatic [1], [2], time-harmonic skin effect [3], [4] and 
eddy current [5] problems. 
 Similarly to the well known FEM-BEM (Finite Element 
Method - Boundary Element Method) [6-8], FEM-DBCI 
(Dirichlet Boundary Condition Iteration) couples a 
differential equation for the interior problem with an integral 
one, which expresses the unknown Dirichlet condition on the 
truncation boundary and involves free-space Green function. 
Differently from FEM-BEM, the FEM-DBCI integrals have a 
support strictly disjoint from the truncation boundary, so that 
singularities are avoided. 
 The resulting hybrid global system is solved by a simple 
iterative procedure: assuming an initial guess for the Dirichlet 
condition on the truncation boundary, the sparse FEM 
equation is solved by means of a standard solver for bounded 
problems, e.g. the conjugate gradient (CG) solver; the dense 
DBCI equation is then used to improve the Dirichlet 
condition [1]; the procedure is iterated until convergence is 
reached. This solution strategy is efficient because the CG 
solver is applied to the sparse equation and the dense 
equation is used only a few times by a fast matrix-by-vector 
multiplication. 
 In this paper the FEM-DBCI method is extended to the 
case in which some floating potential conductors are present 
in the electrostatic system. The method incorporates in the 
DBCI iterations the ones relative to the floating potentials. 
 

II.  FEM-DBCI FOR FLOATING CONDUCTORS 
 

 Consider the electrostatic system in Fig. 1 constituted by 
dielectric bodies, charge distributions and conductors 
embedded in an unbounded dielectric medium (free space). 
Some conductors are voltaged at given potential values Vk, 
k=1,..,NC, with respect to infinity where the potential is 
assumed to be zero. The other conductors have assigned total 
charges Qh, h=1,…NF (floating potential conductors). 
 In order to compute the electric potential v(x,y,z), a 
fictitious truncation boundary ΓT is introduced. This boundary 
must include all the conductors and non-homogeneities, but it 
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Fig. 1.  An electrostatic system made of some voltaged or floating 
conductors, non-homogeneities and distributed charges, enclosed by a 
truncation boundary. 
 
 

may leave out some (lumped or distributed) charges. 
 In the bounded domain D so obtained, the Poisson equation 
holds: 
        ( ) ρ=∇ε⋅∇ε− vr0                      (1) 
 

where ε0 is the vacuum electric permittivity, εr is the relative 
permittivity and ρ is the charge density. Dirichlet boundary 
conditions hold on the surface of the voltaged conductors, 
whereas unknown Dirichlet conditions are assumed to hold on 
ΓT and on the surfaces of the floating potential conductors.  

Discretizing the domain D by means of simplex nodal finite 
elements of a given order, the following FEM algebraic 
system is derived: 
        FFTT0 vAvAbAv −−=             (2) 

where v, vT and vF are the column vectors of the potential 
values at the N internal nodes, at the NT boundary nodes and 
at the surfaces of the NF floating potential conductors, 
respectively, b0 is a column vector which constitutes the 
known term of the system and is due to the internal sources 
and to the voltaged conductors, A, AT, AF are sparse matrices 
of geometrical and constitutive coefficients.  

The unknown Dirichlet condition on the fictitious boundary 
is expressed through: 
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where ΓM is a closed surface enclosing all the conductors and 
dielectric non-homogeneities, but strictly enclosed by ΓT, n' is 
its outward normal unit vector (see Fig. 1), and G is the free-
space Green function, given by 
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where r is the distance between points P and P', lying on ΓT 

and ΓM, respectively. In the numerical approximations this 
equation reads: 
         FextT KvHvvv ++=                 (4) 
 

where vext is a vector due to the external sources, H is a dense 
rectangular matrix in which non null entries appear for the 
nodes of the elements adjacent externally to the surface ΓM 
and K is a rectangular dense matrix. 

For the unknown floating potentials, it is necessary to write 
the following integral equations: 
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where Γh is the surface of the h-th floating conductors. In the 
numerical approximation this equation reads: 
 

        CvqDv +=F                                      (6) 

where tN21 ]Q...QQ[
F

=q  is the column vector of the 

charges in the floating potential conductors, D is a diagonal 
matrix and C is a dense rectangular matrix in which non-null 
entries appear only for the nodes of the elements adjacent to 
the surfaces Γh. 
  The global algebraic system is constituted by equations (2), 
(4) and (6). This system can be solved by means of an 
iterative approach, similar to that of the basic FEM-DBCI 
method: 
1) assume initial guesses for the Dirichlet boundary condition 
vT on ΓT (e.g. vT=0) and for the floating potentials vF; 
2) solve the interior FEM problem (2), for example, by means 
of the CG solver;  
3) use equation (4) to obtain another guess for vT; 
4) another guess for the floating potentials vF is obtained by 
means of (6), rewritten as: 

          CvDqDv 11
F

−− +=             (7) 

5) repeat steps 2, 3 and 4 until convergence is reached. 
 

III.  A NUMERICAL EXAMPLE 
 

 In this section an example is provided concerning an 
electrostatic system, constituted by a discharged square 
capacitor (thickness t = 1 cm, edge length l = 10 t, relative 
permeability of the dielectric εr=9) in the presence of a 
lumped charge Qext = 1.0 10−9 C, placed at a distance d = 5 t 
from the center of the upper armature of the capacitor, as 
shown in Fig. 2. Due to symmetry reasons, the analysis is 
restricted to a quarter of the system, by imposing 
homogeneous Neumann conditions on the xz and yz planes. 
The truncation boundary ΓT is selected as a parallelepiped, 
placed at a distance dT = t from the capacitor surface; the 
integration surface ΓM has the same shape of ΓF at a distance 
of dF = t/4 from the capacitor.  
 The domain is regularly discretized by means of 34560 
second-order tetrahedra and 93025 nodes, of which NT=1789 
lie on the truncation boundary and 882 on the two floating 
armatures.  Having set an end-iteration tolerance of 10−4 per 
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Fig. 2.  A discharged capacitor in the presence of a lumped charge Qext. 

 

 
 

Fig. 3.  Contours of the potential. 

 
 

cent for the CG solver and 10−2 for the DBCI, convergence is 
obtained with 13 iterations. The CPU time is 5.73 s on an 
AMD Turion 64 X2 Mobile Tech. TL-64, 2.2 GHz, 2 GB 
RAM, GNU/Linux 64bit. Fig. 3 shows the contours of the 
electrical potential in the xz plane and on ΓT. 
 Details and other results will be provided in the full paper. 
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